
Neural Network Graph Classifier

of Probability Distributions

by

Patrick Spohr

February 20th, 2024

Code

https://github.com/p-spohr/NN-Graph-Classifier

HTW Berlin

Master’s Program

Mathematical Finance, Actuarial Science, and Risk Management

Department

Information, Communication, and Economics

Course

Deep Learning Seminar

Professor

Dr. Alla Petukhina



Table of Contents

1 Motivation and Objectives 2

1.1 Graph Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Initial Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data 5

2.1 CIFAR-10 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Scraped Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Generated Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methods 10

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Feed-Forward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 CNNs vs FNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.2 CNN and Max Pooling Layers . . . . . . . . . . . . . . . . . . . . . . 12

3.3.3 Rectified Linear Units . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.4 Cross-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.5 Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Python, Keras, and Libaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Simplified Graph Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Distribution Graph Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Results 22

4.1 Simple Graph Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Distribution Graph Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Conclusions and Further Research . . . . . . . . . . . . . . . . . . . . . . . . 31

References 33

1



1 Motivation and Objectives

1.1 Graph Classifier

In the age of information, those that can successfully and quickly interpret large amounts

of data will have an advantage. The field where converting data into visual aids is called

descriptive statistics and the most common method to do this is with graphs. This follows

the adage, ”A picture says a thousand words.” With just a glance someone can understand

and make connections about the data without needing to scan through a table of numbers.

There are many different kinds of graphs: bar charts, pie charts, line graphs, scatter plots,

and radar charts – to name a few. Within those charts they can be divided up into even

more subtypes, like stacked bar charts or donut charts. From science to business, charts are

the main way key parts of the data are shown to other researchers, customers, or investors.

The McDonald’s 2022 Annual Report [8] has a total of 73 pages and 8 graphs. Each graph

displays important information to the investor, like the figure which shows total revenues by

segment on page 13. One can see that from 2020 to 2022 the revenue from international

operated markets rose and fell, but overall, the revenue share from the different segments

have remained static. Would it be beneficial to have access to these graphs immediately

without needing to browse through the whole report? The ability to identify and then

classify graphs instantly in the report without needing to read through it and snip out the

graphs manually would save time and effort. The overall flow of this system would have three

parts: Identify, Locate, and Organize. Identify would simply see if it is a graph or not and

classify it into a type of graph. Once that is finished then the graphs can be located on a

page and extracted. The last part would organize the charts for easy viewing. My focus is

on the Identify part of this system and will be limited to building a model that answers two

questions: Is this image a graph? What kind of graph is it? Regarding the second question, I

will limit the scope even further because of the multitude of different graphs. The focus will

be on classifying the probability distribution in a graph. Regarding the graphs, probability

distribution is commonly shown with a line graph or histogram, so the graph type will be

one or both of these types of graphs. This was chosen because of the novelty of the problem

– no similar projects were found – and because of my current study of stochastics.
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1.2 Literature Review

I will need to briefly mention the literature I searched for and the literature that guided this

project. As mentioned earlier, this project is quite novel in its end goal since I did not find

any research that specifically tried to classify graphs into probability distributions. There

were projects that classified graphs into bar charts, pie charts, etc., but even then, those

projects were not part of published research. When one tries to search for a neural network

graph classifier or a similar pattern the first results are about Graph Neural Networks or

GNNs, which are unrelated. As for image classification itself, there are a plethora of papers

and resources. I personally learned a lot from a Stanford University course [7] and An

Introduction to Convolutional Neural Networks from O’Shea and Nash [17].

1.3 Main Goals

As stated previously, my focus is on the identification and classification of graph images. This

can be accomplished in two types of models where the first one classifies a graph image from

a natural image (non-graph) and the second one classifies a graph image into its probability

distribution. There are many probability distributions to choose from, but I selected the nor-

mal distribution, log-normal distribution, exponential distribution, and uniform distribution.

I primarily choose these distributions because they are common and relatively distinct from

each other. The reasoning behind this two-model process is to be able to produce a baseline

result where it is known that graphs can be distinguishable from natural images. I predicted

early on that graphs would be quite distinguishable from natural images and the accuracy of

this model would be high, but as it will be discussed later, there is a second component to

this problem specific to my data. These hurdles will be expanded upon in the next section.

In summary, the workflow of the project was split into four steps: acquire data, build

and train simple graph classifiers, build and train distribution graph classifiers, and evaluate

the models. Getting data had the potential to be the hardest step of this project because of

the novelty of its goals to classify graph images into their probability distributions and I was

partly correct. The next major obstacle was choosing the right model to build the machine

learning models and the method in which each image would be classified. In the ’Methods’
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section, I will go in depth to explain the process of how the models were built and the images

classified.

1.4 Initial Problems

As image classification is a vibrant and bustling field, there is no shortage of natural images

of various types of things – cars, airplanes, horses, cats, dogs, clothes, etc. One of the most

common datasets for natural images is the CIFAR-10 [14] as it is well labeled and contains

various images. The task of finding graph images was much more difficult. However, there

was a suitable dataset of graphs on Kaggle from SunEdition [19] which met my requirements

to build the first model, which simply classifies an image as a graph or not a graph. Un-

fortunately, this dataset does not contain classes with specific probability distributions and

cannot be used for the second model – classifying the four chosen probability distributions

in graphs.

The biggest issue was getting a dataset with the normal distribution (norm), log-normal

distribution (lognorm), exponential distribution (exp), and uniform distribution (unif) as its

four classes. As I saw it, this could be solved in two possible ways. First, I could have

scraped the graphs from various online sources. However, this leads to a major issue of not

only where to scrape the graphs but how to label them time efficiently. The dataset from

SunEdition on Kaggle has some major drawbacks when wanting to classify the images into

more specific classes since many graphs have more than one graph type in the image. These

would be apparent in my own scraped graphs as well and that makes the correct classification

impossible. An example of this would be a histogram of the normal distribution on one side

with a pie chart on the other side. Additionally, the dataset includes ‘graph-like’ images

which are depictions of graphs but have no numerical value and are closer to art or natural

images. I could also mention that even in a graph type, like bar charts, there are subcategories

– stacked bar charts, horizontal bar charts, vertical bar charts, etc. Were I try to scrape the

graphs, then I would lose control of the variables and spend most of my time labeling each

graph which would be impossible for the timeframe of the project. This leads to the second

solution to my problem. I could generate the graphs.

Generating graphs with the aid of a graphing library was the most time effective solution
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to acquire thousands of graphs with the four distributions in already-labeled classes. This is

not the ideal solution since it biases the dataset towards the design conventions of the chosen

graphing library and it lacks the variety seen online, but it can be highly randomized to mimic

the potential graphs in various sources and the variables can be controlled to ensure all graphs

have the potential to be classified. The most important consideration in this method is the

time saved by generating the graphs. The daunting task of scraping and labeling 10,000

graphs can now be minimized into writing a script using a graphing library. The specifics of

the three datasets used will be further explained in the subsequent section.

2 Data

2.1 CIFAR-10 Images

The CIFAR in CIFAR-10 stands for the Canadian Institute for Advanced Research and the

10 represents the 10 classes in the dataset: airplane, automobile, bird, cat, deer, dog, frog,

horse, ship, and truck [14]. The data comes in six batches of 10,000 images with a total of

60,000 images. The 10,000 images in each batch are made up of 10 classes with 1,000 images

per class. The images are colored and 32x32, which means they have a shape of (32,32,3).

The first two values represent the dimensions and the 3 stands for the red, green, and blue

channels. This data structure is known as a tensor. However, the original data type is a flat

NumPy array of (3072,), so each image needed to be reshaped to fit in the model with the

graphs.

The updated dataset has 10,000 images (first-batch) that are all 32x32 and in JPG format.

Also, the 10 classes have been combined into one natural image class. I have only selected

10,000 because there are only 7,753 suitable graphs in the scraped graph dataset. Had I

selected more then that would have led to an imbalanced dataset in the model. In my project,

the CIFAR-10 dataset will be labeled as CIFAR or natural. See Visual 1 for examples.
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Visual 1: CIFAR-10 Natural Images (CIFAR) Deer Examples [14]

2.2 Scraped Graphs

Just like the CIFAR-10 dataset, the scraped dataset [19] needed to get updated to work

with the simple graph classifier model as well. The original dataset has 15,786 images and 8

classes. The classes are just image, bar chart, diagram, flow chart, graph, growth chart, pie

chart, and table. The class ‘just image’ refers to non-graphs or natural images, so it needed

to be removed. Other classes like table, flow chart, and growth chart were not necessary and

were removed as well because tables have no visuals and the flow charts and growth charts

are not based on numbers.

In the end, four classes were kept, bar chart, diagram, graph, and pie chart, so the total

images now used were 7,753. The images came in various dimensions and were resized to the

natural images 32x32 and converted to JPG format. I will note here that JPG was chosen
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because it only has 3 color channels and no alpha channel. If PNG is used then it could have

a shape of (32,32,4) which adds unnecessary parameters for the scope of my objectives. I’ll

refer to this dataset as scraped graphs or SCP. See Visual 2 for examples.

Visual 2: Scraped Graphs (SCP) Bar Chart Examples [19]

2.3 Generated Graphs

Lastly, 8000 graphs were generated in a 460x345 dimension and JPG format. The graphing

library used was Matplotlib in Python, but I will discuss the programs and libraries in more

detail in the “Methods” section. There were 4 classes – norm, lognorm, exp, and unif –

with 2,000 images each. The only thing updated were the dimensions which included 32x32,

115x86, and 153x115. For clarity, these dimensions follow the Windows format of width by

height.
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Visual 3: Generated Graphs (GEN) Normal Distribution Examples

As for the design, almost every part of the graph was randomized. The color of the

histogram bars, line, figure color (outside the box), face color (inside the box where the plot

is), and text labels were changed, but the figure color and face color were biased to white by

20 percent because most graphs tend to be white. There was also some changes to ensure that

the histogram bars, line, and face do not have the same color. Regarding the histogram and

line, both were visible or only one was visible. The line style was solid or a dash. Each graph

had a title, y label, and x label which consisted of lorum ipsum, which is Latin gibberish

and is commonly used in web design. The idea behind this was to avoid a bias to English

if someone used this model to predict graphs with different languages. The text also had

randomized size. Lastly, the density function parameters were randomized to ensure many

variations of each probability distribution.
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Overall, the graphs looked like something that could be found in a report, book, or online.

The biggest issue with the generated graphs were the so-called ‘duds’ which looked blank

because the color of the face, histogram, and line were too similar. This was not a large

amount of images, so I decided to keep them instead of manually deleting all of them. I

reasoned that keeping the originals is better for reproducibility, rather than someone, me,

deciding if a graph is a dud or not since some graphs are on the border of being a dud or not.

Ultimately, the seed of the graph generator remains the same and the dataset can always be

recreated and used in the model. See Visual 3 for examples.

Early on, I pre-identified possible misclassifications once I scanned through the set of

generated graphs. The similarities between some of the graphs, especially the log-normal

and normal distribution, were considerable. They were not ‘duds’ like previously mentioned

– they looked typical, but because of the density functions’ parameters, they were similar

in appearance to a point where it would become a 50-50 decision if I had to classify them

myself. The cases when this happened are a minority, but it was important to keep this in

mind as I evaluated the models later. The density function of each probability distribution

used is listed below.

Normal Distribution Density Function X ∼ N (µ, σ2)

fX(x) =
1√
2πσ2

exp

−(x− µ)2

2σ2


Log-Normal Distribution Density Function X ∼ LN (µ, σ2)

fX(x) =
1√
2πσ2

exp

−(log(x)− µ)2

2σ2


Exponential Distribution Density Function X ∼ Exp(λ)

fX(x) = λexp(−λx)

Uniform Distribution Density Function X ∼ U[a, b]

fX(x) =
1

b− a
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3 Methods

3.1 Overview

As an introduction to the methods used, I will briefly list the steps taken to achieve my

objectives. Firstly, I reviewed literature available on artificial neural networks (ANNs) and

convolutional neural networks (CNNs). Then, I familiarized myself with TensorFlow, Keras,

and Pillow (Python library for images). After that I found natural images (CIFAR) and

scraped images (SCP). The next step was generating the graph dataset (GEN) in 32x32,

115x86, 153x115 dimensions. With all the data prepared, I trained simple graph classifiers

using CIFAR, SCP, GEN datasets using 32x32 images. Those models were then evaluated

by using saved Keras model to predict the images. Subsequently, I moved on to train the

distribution graph classifiers using 32x32, 115x86, 153x115 dimensions. In order to see where

the models of the distribution classifier models misclassified, I input all the images into the

saved Keras models again. Lastly, I tested untrained images with the distribution classifier

153x115 which were not used in any model previously.

3.2 Feed-Forward Neural Networks

The ANN process used in my model is called a feed-forward neural network or FNN. The

structure of the model consists of three parts and are shown in Visual 4: an input layer, one

or many hidden layers consisting of neurons, and an output layer. The two main processes in

the model are forward-propagation and back-propagation, and can be summed up by their

respective goals, producing an estimate and minimizing the loss. Forward-propagation begins

once the model is built and the data is split into the input values x and the target values

y. In my simple model, a graph image x would be predicted to be y – a graph or a natural

image.

The input data starts from the input layer and flows into the neurons in the hidden layers

where it gets multiplied by a weight. The process can be defined as the dot product between

the input values and their respective weights. The product then goes into an activation

function in the neuron, so that the neuron ‘fires’, returning a modified value, or ‘rests’ –
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gives zero. The process is repeated through every hidden layer until the output value from

the final hidden layer enters the output layer, where it is again put into an activation to

determine the final prediction or estimate. The estimate is then put into a loss function to

calculate the loss or difference between the estimate and target value. From here a process

called back-propagation starts which goes from the back to the front of the entire model. The

loss function gets minimized by an optimizer using gradient descent to achieve the smallest

possible loss and this is done by changing the weights between the neurons for every layer

and every connection. Forward-propagation and back-propagation are repeated until the loss

is minimized enough to suit the goal of the model.

Visual 4: Neural Network [3]

3.3 Convolutional Neural Networks

3.3.1 CNNs vs FNNs

In order to classify images, the FNN model needs to be adjusted to take the tensor shape of

images into account. This is where convolutional neural networks or CNN come into play.
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The biggest difference between convolutional neural networks or CNNs and a more standard

FNN is that they are mostly used in image classification. CNNs enable encoded image-

specific features into the architecture (location + color), making the network more suited for

image-focused tasks while also reducing the parameters required to set up the model [17].

Simply put, the overall structure of the model does not change, meaning the model still

has an input layer, hidden layers, and an output layer. Additionally, the main processes of

forward-propagation and back-propagation remain untouched, however the hidden layers get

tweaked considerably whereby the neurons do not take one value, but a tensor and these

neurons only connect to a small region of the layer preceding it. These new hidden layers are

now called convolutional layers. The next major addition is another layer called a pooling

layer, which comes after a convolutional layer.

3.3.2 CNN and Max Pooling Layers

The most important parts of a CNN are its convolutional layers and pooling layers since

they are the means in which the original image gets ‘boiled down’ into its ‘essence’. I use

this analogy because one can imagine a set of ingredients, pixels making up an image, that

get thrown into a boiling pot where the water evaporates leaving only the important flavors

behind. This visceral example can be summed up more literally, where the original image

gets transformed layer by layer from the original pixel values to the final class scores. By the

end, the full image will be reduced into a single vector of class scores, arranged along the

depth dimension. What are these class scores? They indicate the estimate for each class or y

target. As an example, the final output layer for CIFAR-10 would have dimensions of (1, 1,

10) since it has a total of 10 classes that an image can be sorted into [7] – airplane, dog, cat,

etc. The step by step process can be seen more clearly in Visual 5, where the input image of

car will be transformed into the most important features and then classified as a car.

What is a convolutional layer exactly? The four important parts are the filter, kernel,

stride, and padding. These are the parameters that will determine how the convolution is

performed. First, the number of filters are chosen, also known as output filters, and they

determine how many times the image gets passed through the process. One filter means one

pass through and one output tensor, while 10 filters mean ten pass throughs and 10 output
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Visual 5: Long Short-Term Memory Unit [7]

tensors. The next choice is the size of the filter, which is known as the kernel. An example

kernel size is (3,3,3) and this works just like image dimensions, where the height is 3, the

width is 3, and the RGB channels are 3. The kernel in the example can be visualized as

something that slides over the image and only focuses on a 3-by-3 area at a time. Adding

on to the previous example, if the model has 10 filters, then that means there would be 10

output tensors, but that does not mean the output tensor shape would be (3, 3, 3). One

needs the last two parameters, stride, and padding, to calculate the output tensor shape. The

stride is a number that tells the kernel how many pixels it should move at a time over the

image. A stride of one means the kernel moves across the image space 1 pixel at a time. The

last parameter padding, or zero-padding, tells the model how many zeros to place around

the image so that no vital information is lost when the kernel slides over the image. With

the parameters decided, one can now calculate the output volume size or shape of the output

tensor.

Output Volume Size Equation [7]:

V =
W − F + 2P

S
+ 1

Where W := input volume size, F := receptive field size (kernel), P := amount of zero
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padding, and S := stride of kernel

The convolutional layer is not the only new layer added in a CNN. The layer that often

proceeds a convolutional layer is a pooling layer, or in the case of my model, a max pooling

layer. The CNN and pooling layers work hand in hand to capture the most important parts

of an image. Pooling is also known as downsampling and this is where a lower resolution

version of an input signal is created. This method is used to retain the large or important

structural elements without the fine detail that may not be as useful [4]. The outputs of the

convolutional layers record the precise position of features but following small movements in

the position of the feature, like a cat head slightly turned, will result in worse predictions,

so max pooling is utilized, where only the highest value in every feature map or output filter

goes on to the next layer. It can be noted that another pooling method, average pooling,

can be used. It functions the same but averages the values in the feature patch.

Visual 6: Maxpooling Example [15] Credit: Codicals

Max Pooling Function:

M = max(fi)

for i = 1, ... , F feature map patches
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3.3.3 Rectified Linear Units

As stated earlier, the activation function simply tells the neuron to ‘fire’ or ‘rest’ which in

the case of the activation function I used, rectified linear unit function or ReLU, the value

returned is either 0 if x < 0 or x if x > 0 [2]. ReLU is used as an activation function for

a few key reasons. First, the simple nature of the function, f(x) = max(0,x), eliminates

complex calculations and reduces the processing demands. This is especially important in

convolutional layers where the amount of parameters can skyrocket and increase the time

needed to learn. This works in practice by promoting sparsity in the model and sparsity

refers to the scenario where most of the cell entries in a matrix, or in this case tensor, are

zero [18].

Rectified Linear Units (ReLU):

f(x) = x+ = max(0, x) =
x+ |x|

2
=

{
x if x > 0
0 otherwise

Visual 7: Rectified Linear Unit [2]

3.3.4 Cross-Entropy

The next important topic to cover is the loss function used since the learning process can

only happen if the model has a loss function to calculate the error. The loss function in the
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models I built was the cross-entropy loss function. These functions, used in classification

problems, calculate how accurate the machine learning or deep learning model is by defining

the difference between the estimated probability with the desired outcome [21]. These func-

tions come in two versions, one for binary classification and one for categorical classification.

My model uses categorical cross-entropy because it is a multi-class classification problem,

which means there is only one correct class per x input or image. Had I evaluated if multiple

graphs were in an image, then it would become a multi-label classification problem, so the

final prediction vector would have a dimensionality of the number of classes, but each element

in the vector could be 0 or 1 depending if the image contains two classes [9]. For example, if

an image had two graphs with one uniform distribution and one normal distribution, then it

would look like [0, 0, 1, 1] (classes sorted alphabetically: exp, lognorm, norm, unif).

Binary Cross-Entropy Function:

BCEL = − 1

N

N∑
i=1

(yi · log(pi) + (1− yi) · log(1− pi))

Categorical Cross-Entropy Function:

CCEL = − 1

N

N∑
i=1

C∑
j=1

(yi,j · log(pi,j))

Where N := number of rows

C := number of classes

y := indicator if class label j is the correct clasification for observation i

p := predicted probability observation i is of class j

3.3.5 Adam Optimizer

To wrap up this section over CNNs, the optimizer used to minimize the loss function needs

to be mentioned. The optimizer is called gradient descent and it can be described as a

first-order iterative algorithm for finding a local minimum of a differentiable multi-variable

function. This is apposed to gradient ascent where the algorithm tries to find the local

maximum. This can be visually imagined as a rock falling from the mountain side where

it will stop once it hits the lowest point or if it gets stuck in a low point between two high
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points – which is to be avoided. The models use the Adam Optimizer and that is “. . . an

algorithm for first-order gradient-based optimization of stochastic objective functions, based

on adaptive estimates of lower-order moments [13].” The parameters used are alpha, beta1,

beta2, and epsilon. Alpha is also known as the learning rate and determines the stepsize,

and is usually very small at around 0.001, which is important, because the algorithm should

not skip over the minimum. The major advantages of the Adam optimizer are that it only

requires first-order gradients and has relatively little memory requirements.

Visual 8: Adam Optimizer Algorithm [13]

3.4 Python, Keras, and Libaries

The implementation of this project would not be possible without the various tools used. I

will describe them all briefly and list out the versions used for the sake of reproducibility

in Visual 9. TensorFlow [1] is an end-to-end platform for building machine learning models

and that works with Keras [5], which is a deep learning API written in Python connected
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to TensorFlow, to create all of the models in this project. Python comes with a plethora

of libraries to make working with data and images easier. First there is NumPy [10] – a

math library with powerful ndarrays. Then there is pandas [20] [16] which allows for the

creation and manipulation of dataframes, which themselves are made up of NumPy’s arrays.

The next important library is Matplotlib [11] where all of the generated graphs used in the

models were plotted. Lastly, one of the most important libraires for image classification using

TensorFlow and Keras is Pillow [6] since it allows the user to manipulate individual pixels

of an image using Python. The PIL Image is a class that can be used and returned using

TensorFlow.

Library Versions

python 3.10.13

tensorflow 2.10.0

numpy 1.26.0

pandas 2.1.1

matplotlib 3.8.0

pillow 10.0.1

Visual 9: Python und Library Versions

3.5 Simplified Graph Classifier

In total, four simple graph classifiers were created – each with a specific purpose of evaluation

in mind. The idea behind them was to create a base assumption that the graphs I generated

can be considered a realistic dataset one could get if they scraped from various sources. The

main goal is to be able to classify graphs into their probability distribution, but this step

acts as a bridge and quality assurance for the generated graph dataset which will be used in

the distribution graph classifiers. Each model has a specific name consisting of acronyms to

distinguish itself: CIFAR is the natural images, SCP is the scraped graphs, GEN stands for

the generated graphs, and 1 indicates the model structure. This results in the four models:

18



CIFAR SCP 1, CIFAR GEN 1, GEN SCP 1, and CIFAR GEN SCP 1. The model struture

for all classifiers is shown by layer in Visual 10.

Layer Type Parameters

1 Rescaling (1/255, input shape = (H, W, 3))

2 Conv2D (filter count = 16, kernal size = 3, padding=’same’, activation = ’relu’)

3 MaxPooling2D none

4 Conv2D (32, 3, ’same’, ’relu’)

5 MaxPooling2D none

6 Conv2D (64, 3, ’same’, ’relu’)

7 MaxPooling2D none

8 Flatten none

9 Dense (units = 128, ’relu’)

10 Dense (number of classes = 4)

Visual 10: Model 1 Layer Information

Model Info CIFAR SCP 1 CIFAR GEN 1

x 32x32 images 32x32 images

y [graph, natural] [graph, natural]

total 17,753 18,000

train 14,203 14,400

val 3,550 3600

model 1 1

Visual 11: Model Information for classifying graphs from natural images

The first model created aims to classify natural images from the scraped graphs. This

answers the first basic question: how easily can the model distinguish a natural image from

a graph image? The desired outcome would have a high accuracy since graphs have many

combinations of characteristics that would not be found in natural images, for example grid
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lines, large areas of only one color and surrounding text. One can imagine a natural image

with some of these features, but this would be a small number of instances.

The second model, much like the first one, answers the question: are the generated graphs

distinguishable from the natural images as well? This was the first test for the generated

graphs and much like the first model, should have achieved high accuracy. The main question

here would be the difference in accuracy between CIFAR SCP 1 and CIFAR GEN 1 since a

higher accuracy in the former would indicate that my generated graphs have some similarities

with natural images that are not apparent in the scraped graphs. This could be turned around

and a much higher accuracy in CIFAR GEN 1 could indicate that one of my original theories

about the scraped dataset could be correct and that is the ‘graph-like’ nature of the images

in the scraped dataset which are more artistic or non-numerical representations of graphs.

In Visual 11, one can see that the input in CIFAR SCP 1 and CIFAR GEN 1 are balanced.

GEN SCP 1 was a major test of the simple graph classifier since it will have indicated if

my generated graphs were randomized enough to simulate what a bunch of scraped graphs

would be. The desired outcome here would be a lower accuracy of around 50 percent to

show the interchangeability of the two datasets. A high accuracy would indicate the need to

randomize the generated graphs more and put them through more preprocessing steps.

Lastly, all of the datasets were used in a model to classify them as natural, generated, or

scraped. The outcome of this would not be as important as the first three, but it would have

reinforced the previous intermediate conclusions about the nature of the datasets. A very

high accuracy would have meant all datasets are highly distinguishable from one another

and point towards tweaking the generated graphs. The information for GEN SCP 1 and

CIFAR GEN SCP 1 can be seen in Visual 12.

3.6 Distribution Graph Classifier

The core of the project was being able to create a model that can classify graphs of four

different probability distributions and they, like the simple graph classifiers, have specific

naming conventions. DIST indicates that they are the distribution classifiers. Number x

number specifies the dimensions of the image (width x height). The 1 indicates like earlier

the first model structure. The three models are as follows: DIST 32x32 1, DIST 115x86 1,
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Model Info GEN SCP 1 CIFAR GEN SCP 1

x 32x32 images 32x32 images

y [generated, scraped] [generated, natural, scraped]

total 15,753 25,753

train 12,603 20,603

val 3,150 5,150

model 1 1

Visual 12: Model Information for classifying generated from scraped graphs

and DIST 153x115 1. It is important to note that dimensions are reversed in TensorFlow

and the shape of the image is (height, width, rgb).

Model Info DIST 32x32 1 DIST 115x86 1 DIST 153x115 1

x 32x32 images 115x86 images 153x115 images

y [exp, lognorm, norm, unif] [exp, lognorm, norm, unif] [exp, lognorm, norm, unif]

total 8,000 8,000 8,000

train 6,400 6,400 6,400

val 1,600 1,600 1,600

model 1 1 1

Visual 13: Model Information for all distribution graph classifiers

The images used, total number of images, training images, validation images, and model

structure are all the same, except for the dimensions of the image and that can be seen in

Visual 13. The reason for this is how much information is lost when the image is 32x32.

It was easy to assume that the model would perform poorly when the density function line

almost completely disappears. My solution was to increase the dimensions and thereby its

quality. The classes, y target, are as previously stated: exp, lognorm, norm, and unif.
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4 Results

4.1 Simple Graph Classifiers

The first measure of all of the models were the training and validation accuracy and training

and validation loss. The caveat here is the training validation should not be much higher

than the validation accuracy because that indicates overfitting and future poor performance

with untrained images. CIFAR SCP 1 performed as expected and reached a 97.55 percent

validation accuracy after 3 epochs. Subsequently, the CIFAR GEN 1 performed slightly

better with a final 99.89 percent validation accuracy after 3 epochs. Because of the high

validation accuracy after 3 epochs, I felt it was unnecessary to increase this parameter more.

The crucial model, GEN SCP 1, achieved an accuracy of 99.21 percent, which as I mentioned,

is the undesired outcome. This points to the previous hypothesis that the generated graphs

and scraped graphs are so different that they can be considered disjunct subsets in the set

of all graphs. This would mean the usability of models trained with the generated graphs

are extremely limited in their capacity. The ramifications of this result indicate the need to

tweak the programs that generate the graphs and the addition of preprocessing techniques.

I will remark more on these additional techniques in the ‘Conclusions and Further Research’

section. The last simple graph classifier model, CIFAR GEN SCP 1 performed how the

earlier models indicated with a 98.12 percent validation accuracy.

In order to properly evaluate the models, the accuracy and loss were not enough as

indicators alone. To this end, I saved all of the models and fed in the graph images they

have not seen yet. The models simply classified each image as natural or graph. First, I

put the generated graphs in CIFAR SCP 1. The perfect outcome should be 100 percent

since all 8,000 images are graphs. The accuracy in this evaluation was 80.94 percent. This

could be much better but considering the high accuracy from GEN SCP 1, these graphs

are not very similar. Next, the scraped graphs were put into CIFAR GEN 1 and, like the

above evaluation, should have a perfect accuracy of 100 percent. The accuracy dropped

even lower to 37.22 percent which is far from ideal. What does this mean exactly? When

graphs from the scraped dataset are put into the CIFAR GEN 1, it classifies most of them as

natural images. This outcome strengthens a hypothesis that quite a lot of scraped graphs are
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Visual 14: CIFAR SCP 1 Training and Validation Accuracy and Loss

Visual 15: CIFAR GEN 1 Training and Validation Accuracy and Loss
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Visual 16: GEN SCP 1 Training and Validation Accuracy and Loss

Visual 17: GEN SCP 1 Training and Validation Accuracy and Loss
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Visual 18: Misclassified generated graphs in CIFAIR SCP 1

‘graph-like’ and are more similar to natural images. As the generated graphs are the main

focus, I took a deeper look at the falsely classified generated graphs in CIFAR SCP 1. The

misclassifications were spread out pretty evenly, but the graphs with uniform distribution

were most often classified as natural images. The counts can be seen in Visual 18 and some

examples of misclassified graphs are shown in Visual 19.

4.2 Distribution Graph Classifiers

Just as before, I will first cover the training and validation accuracy and training and valida-

tion loss of each distribution graph classifier first. I will start with image data from the lowest

dimension to the highest. The DIST 32x32 1 ran for 10 epochs since the model originally

struggled to classify the graphs in only 3 epochs like the simple graph classifiers. This is

a reasonable change in parameters since it is no longer a binary classification problem but

a multi-class classification problem. After training it reached an accuracy of 79.25 percent

validation accuracy. At an image size of 32x32 pixels this accuracy surprised me, especially

when you can see that after one epoch the validation accuracy was already above 60 per-
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Visual 19: Examples of misclassified generated graphs as natural images

cent. Increasing the quality, or dimensions, of the image greatly increased accuracy. The

DIST 115x86 1 was able to achieve a validation accuracy of 93.00 percent after 10 epochs.

However, there is a diminishing return in regard to image quality since the validation accu-

racy only improved by 0.5 percent to 93.5 percent in the model DIST 153x115 1. Overall,

the results are promising, but they require an evaluation to see where the graphs are getting

misclassified. The validation accuracy of DIST 115x86 1 and DIST 153x115 1 are hanging

around 93 percent, so the question becomes what are the images that are not getting classified

correctly.

After the training was finished, I saved all the models and fed all 8,000 graphs into the

DIST 153x115 1 for evaluation. I decided to stick with evaluating one model since doing the

same process for all would have been redundant and not given me further insights into the

data and model performance. I chose DIST 153x115 1 instead of the other two because it

performed slightly better but using DIST 115x86 would have been viable as well. The saved

DIST 153x115 1 model performed well in the evaluation by accomplishing an accuracy of

96.54 percent. That means there were a total of 270 misclassifications out of 8,000 images,

and the results can be seen in Visual 23 and Visual 24. The probability distribution with
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Visual 20: DIST 32x32 1 Training and Validation Accuracy and Loss

Visual 21: DIST 115x86 1 Training and Validation Accuracy and Loss

Visual 22: DIST 153x115 1 Training and Validation Accuracy and Loss
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Visual 23: Counts of misclassified generated graphs in DIST 153x115 1

the most misclassifications was the exponential distribution at 149, while the lowest was the

uniform distribution with only 6 misclassifications. Why were graphs with an exponential

distribution most often labelled incorrectly and by such a wide margin? A closer look at

the data in Visual 23 shows that almost all of the exponential distribution graphs that

were misclassified where misclassified as the log-normal distribution. When one looks at

the images in question and sees the similarities between the log-normal and exponential

distribution graphs, then it is easier to see why that is the case, but it is still noteworthy

how high the accuracy is despite the similarities. There were 2,000 exponential distribution

graphs and only 147 were labeled as log-normal distribution which still indicates a strong

performance.

In order to understand the results better and have a clear record of all the evaluations,

I created CSVs with relevant information. They include the ending prediction weight for
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Prediction Exp Lognorm Norm Unif

True 1,851 1,925 1,960 1,994

False 149 75 40 6

Visual 24: Counts of correctly and falsely classified generated graphs in DIST 153x115 1

each class, the true or false prediction, the file name, the max weight, and the label based on

the max. With the results readily available, it was easy to see some patterns. In my earlier

caveats, it was stated that the normal and log-normal distribution can look quite similar if

given the right parameters and that plays out when one looks at how the model misclassified

some normal distribution graphs as log-normal. Also, from the earlier section about the

generated graphs, I mentioned the so-called ‘duds’ and that comes up in the evaluations as

well. All of the uniform distribution graphs misclassified can be considered ‘duds’ in that

they appear blank.

To wrap up my evaluations and to truly assess my generated graphs and models, I needed

to use graphs that have not been used in any model previously. Visual 25 contains all im-

ages in the final test evaluation that were misclassified. To get this, I simply gathered 20

graphs of every distribution type from random sources online and then added one graph of

each distribution drawn by hand. I felt this would add some realistic grounding to the final

evaluation. Each distribution had 21 graphs, so a total of 84 graphs. The final evaluation

accuracy was 59.10 percent and fell in line with my more hopeful expectations. This eval-

uation is similar to when the scraped graphs where put into CIFAR GEN 1 and if you can

remember, the accuracy was only 37.22 percent. So overall, it is a positive development.

Just like before the question becomes what was getting misclassified and here is where the

results diverged from my original predictions. Almost all of the misclassified graphs were

misclassified as log-normal, which can be seen in the ’label’ column in Visual 25. And if one

analyzed this more granularly then one can see that the uniform distribution graphs were

overwhelmingly misclassified as log-normal. 13 graphs out of the 21 uniform graphs were

misclassified as log-normal. It is surprising how 61.90 percent of uniform graphs in the test

dataset were misclassified as log-normal since the generated uniform graphs were predicted
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exp lognorm norm unif max file name actual label prediction

-4.1661463 8.161812 0.9788155 -10.229221 8.161812 exp 12.jpeg exp lognorm False

3.8511171 4.496506 -3.405139 -5.2995405 4.496506 exp 2.jpeg exp lognorm False

5.872565 11.971514 -6.275291 -12.128517 11.971514 exp 20.jpeg exp lognorm False

9.207311 10.764248 -11.954131 -5.3854074 10.764248 exp 3.jpeg exp lognorm False

-5.917483 15.367903 -4.7242074 -5.200668 15.367903 exp 5.jpeg exp lognorm False

6.1337843 6.400875 -5.021023 -7.4242744 6.400875 exp 8.jpeg exp lognorm False

0.51164746 8.585008 -3.2878444 -6.293257 8.585008 exp 9.jpeg exp lognorm False

-2.7664876 8.546496 0.33398134 -9.835137 8.546496 exp hand 0.jpeg exp lognorm False

-13.257631 5.875923 -2.4565024 7.38458 7.38458 lognorm 0.jpeg lognorm unif False

3.7302907 2.0135944 -0.048096493 -11.51519 3.7302907 lognorm 5.jpeg lognorm exp False

-14.977435 3.678837 1.5030111 1.7347182 3.678837 norm 1.jpeg norm lognorm False

-0.31633773 5.5405626 1.6448251 -18.00231 5.5405626 norm 11.jpeg norm lognorm False

-14.40909 10.438942 7.7604384 -26.327517 10.438942 norm 13.jpeg norm lognorm False

-5.3496103 7.2749767 1.1707792 -6.384265 7.2749767 norm 14.jpeg norm lognorm False

-6.992462 7.189061 4.9432883 -15.288852 7.189061 norm 15.jpeg norm lognorm False

-4.783489 4.332031 3.8387465 -14.778937 4.332031 norm 19.jpeg norm lognorm False

-23.318886 12.883771 -0.8641091 5.143599 12.883771 norm 4.jpeg norm lognorm False

-25.816198 16.998684 4.5914965 -9.728744 16.998684 norm 8.jpeg norm lognorm False

-6.6115365 7.848427 0.57640886 -4.26034 7.848427 norm 9.jpeg norm lognorm False

-0.7095418 1.1841375 -0.53598833 -1.6236649 1.1841375 unif 0.jpeg unif lognorm False

-4.572587 5.3358355 0.4110088 -3.925213 5.3358355 unif 1.jpeg unif lognorm False

-2.4820209 -0.05105117 2.7819424 -4.3270063 2.7819424 unif 10.jpeg unif norm False

-4.820385 9.742123 -7.255406 6.477165 9.742123 unif 11.jpeg unif lognorm False

-0.5606266 6.14713 -2.2170813 -3.020845 6.14713 unif 12.jpeg unif lognorm False

1.1152176 1.1827534 -0.67093164 -5.319949 1.1827534 unif 13.jpeg unif lognorm False

-0.19624099 7.653762 -2.4959579 -3.569571 7.653762 unif 14.jpeg unif lognorm False

-0.46984562 5.252478 -4.9778605 1.5037757 5.252478 unif 16.jpeg unif lognorm False

-0.20320779 4.1991606 1.5740888 -10.120164 4.1991606 unif 17.jpeg unif lognorm False

-2.3884668 3.9697368 -0.6534233 -2.8202808 3.9697368 unif 2.jpeg unif lognorm False

1.6306777 6.3168035 -0.7305184 -8.0671625 6.3168035 unif 3.jpeg unif lognorm False

-5.6656113 4.946749 1.8187 -6.4847775 4.946749 unif 4.jpeg unif lognorm False

-4.4202156 3.0252044 1.0488026 -2.0555344 3.0252044 unif 5.jpeg unif lognorm False

5.331371 4.629284 -3.9633603 -6.628367 5.331371 unif 6.jpeg unif exp False

-4.064364 4.5016537 -3.487114 3.3282218 4.5016537 unif 8.jpeg unif lognorm False

-6.592189 -0.6548197 2.7110033 -1.7038764 2.7110033 unif 9.jpeg unif norm False

0.5345101 0.08001919 0.43601054 -6.1528854 0.5345101 unif hand 0.jpeg unif exp False

Visual 25: All Misclassified Images in Final Test Evaluation
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so accurately in DIST 153x115 1. I can conclude for now that the model needs more diverse

training images to account for the variety in graphs found online and more images to train

on.

4.3 Conclusions and Further Research

As a whole, I can say that the main goals were accomplished. I have a model that can

successfully identify graphs from natural images with greater than 98 percent accuracy and

another model that can successfully identify my generated graphs with four different dis-

tribution types with around 93 percent accuracy. However, when more diverse graphs are

included this drops down to 59.10 percent as shown in the final test evaluation and in Visual

25. Addendum to these results is the caveat from earlier that the generated graphs could be

considered as a disjunct subset, if one considers the scraped graphs to be a genuine sample

of possible and currently available graphs. The GEN SCP 1’s high accuracy points towards

this theory but a large limiting factor is the small sample size – only 8,000 generated graphs

and 7,753 scraped graphs. Some results that surprised me were that scraped graphs in CI-

FAR GEN 1 were misclassified as natural images around 63 percent of the time. This could

indicate that the generated graphs do not consider the more chaotic nature of graph design

– this is substantiated by the final test evaluation as well. It would be safe to say that the

generated graphs are very conservative in appearance. However, this was an original design

choice to reduce the amount of variables in the graphs design, like not having two graphs

in one image or keeping to the standard of having a complete graph in each image. Many

graphs, like the ones in the scraped dataset and the ones I used in the final test evaluation,

do not have any axes, labels, or titles. This enforces the idea that many of the images in SCP

and many graphs in general are more ‘graph-like’ and not graphs in a very defined sense.

Another surprise was the difference in how the uniform distribution graphs were getting mis-

classified. Uniform distribution graphs in DIST 153x115 1 were classified accurately around

99 percent of the time, but 20 percent of generated uniform graphs in CIFAR SCP 1 were

misclassified as natural images. Why were the graphs easily classified in DIST 153x115 1

but not in CIFAR SCP 1? Perhaps graphs with the uniform distribution are unique from

the other distribution graphs but not very unique from natural images. The final test eval-
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uation bucked this trend by classifying uniform distribution as log-normal for a majority of

the graphs. However, in the final test evaluation almost all of the misclassified images were

classified as log-normal, so this might point to an issue with the training images.

Visual 26: DIST 32x32 2 Training and Validation Accuracy and Loss

To conclude I will propose some possible changes and improvements to further this line of

research. The quickest improvements could simply come from changing the model structure

and tweaking the parameters. While I only used one convolutional layer at a time, another

common CNN architecture is to stack two convolutional layers before each pooling later.

This is strongly encouraged as this allows for more complex features of the input vector to be

selected [17]. Regarding the parameters, I built a second model by doubling the number of

filters in the convolution layers to see what some intial changes to the model could do. The

training and validation accuracy and loss of DIST 32x32 2 are shown in Visual 26 – the 2

indicates the second model used. There were minor improvements of the validation accuracy

compared to the DIST 32x32 1, but the issue of overfitting is seen after 10 epochs. Secondly,

one could use more images to train each model. It would be quite easy to generate 20,000

graphs, but that depends on the quality and ‘generalness’ of the graphs. The generated

graphs used in this experiment were highly distinguishable from the scraped graphs and that

leads to the next change, and that is improving the generated graphs. The scripts that

created the graphs can be improved to increase variability, but another way is adding more

preprocessing layers. TensorFlow has a host of different methods that change brightness,
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contrast, crop, flip, and rotation, which would do a good job at simulating the chaotic nature

of graphs created by people from all over the world. Finally, the experiment could be further

by simply expanding the probability distributions used.

As stated at the beginning, the focus was on identifying and classifying graphs, but it

was just the first step in a large picture of identifying, locating, and organizing. To extend

a practical use case for this project, one could start using entire reports as input to train

the model. In this scenario, pages with graphs on them would be the y target. With the

pages identified, they could be returned to the user for quick viewing. From there the model

could be expanded to only retrieve the graphs themselves and organize them into types. This

would require more advanced techniques, especially those in the field of explainable AI [12],

to target specific parts on a page and be able to extract more information.
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